1

Introduction à la diffusion de rayonnement

Martin IN Laboratoire Charles Coulomb Université de Montpellier

GdRs SLAMM et DUMBIO - Atelier SAXS/SANS – Paris 26/09/2023

What is size ?		
Radius of gyration R _g	The radius of the spherical shell which wou the same momentum of « inertia » From $P(\theta)$ $R_g^2 =$	$\frac{1}{p} \langle \sum_{i=1}^{p} (\vec{r_i} - \vec{r_M})^2 \rangle$
Hard sphere radius R _{HS}	The radius of the sphere which would have the same excluded volume Impossible to find two centers of particle closer than 2R _{HS} From 2nd Virial coefficient B	$q \to 0$ $\frac{Kc}{I(c)} \propto \frac{1}{M} + 2A_c c$
Hydrodynamic radius R _h	The radius of the sphere which would have the same diffusion coefficient From autocorrelation function of $I(t)$	$D = \frac{k_B T}{6\pi\eta R_h}$
	GdRs SLAMM et DUMBIO - Atelier SAXS/SANS – Paris 26/09/2023	32

