LABORATOIRE DE GENIE CHIMIQUE

Principle of Small Angles X-rays Scattering or SAXS, physical parameters (Rg, Volume, P(r))

P. Roblin

Université Fédérale Toulouse Midi-Pyrénées; INPT, UPS Laboratoire de Génie Chimique; 118 Route de Narbonne, F-31062 Toulouse France ${ }^{b}$ CNRS, UMR 5503, F-31062 Toulouse, France

http://Igc.cnrs.fr

SAXS experiments in solution : global strategy to process the data

What do we mean by "size" ?

Radius of gyration Rg

The radius of gyration is the root-mean-square, massweighted average distance the scatterers from the center of mass of the object

$$
\begin{aligned}
& R_{g}^{2}=\left(1^{2}+1^{2}+1^{2}+2^{2}+2^{2}+3^{2}\right) / 6=20 / 6 \\
& R_{g}=\sqrt{3} .333=1.82 \text { u.a. }
\end{aligned}
$$

$$
r
$$

Position vector from center of mass
$\rho \downarrow$ object $(\rightarrow r)-$ Variation contrast between object and solvent $\rho \downarrow$ solvent

The radius of gyration can give an idea of the compactness of the object and depends on the volume AND the shape of the particule
$\rho \downarrow$ solvent) $d \rightarrow r / \int V \uparrow$ 整 ($\rho \downarrow$ object
$(\rightarrow r)-\rho \downarrow$ solvent $) d \rightarrow r$

Scattering curves and Rg calculation from simple geometric forms

At the low q, the curves coming from the different shapes follow the same variation giving a plateau (Guinier region), whereas a medium q the decrease of the intensity depends of the shape of the particule At the high q, the intensities of the four models decrease with the same slope because we define previously the objects with a define surface without density fluctuation.

Asymptotic behaviour at small angles: Guìnier law

Close to $q=0$, the scattering intensity of a particle can be described by a Gaussian curve.
The Guinier law is equivalent of a linear variation of $\operatorname{Ln}(I(q))$ vs q^{2} (Guinier plot), providing Rg and $\mathrm{I}(0)$. The validity domain actually depends on the shape of the particle and is around $q<1.3 / \mathrm{Rg}$ for a globular shape.

Prof. André Guinier 1911-2000 Orsay, France

Determination of the mass from Guinier law

From extraplated intensity at the origin $I(0)$, the molecular mass can be determined with the following equation:

$\Delta \rho_{m}=\left[\rho_{M, \text { prot }}-\left(\rho_{\text {solv }} \cdot v\right)\right] r_{0}$ with

- $\rho_{M, \text { prot }}$ is the number of electrons per mass of dry protein $=3,22.10^{23}$ e. g^{-1}
- $\rho_{\text {solv }}$ is the number of of electrons per volume of aqueous solvent $=3,34.10^{23}$ e. cm^{-3}
$-v$ is the partial specific volume of of the protein
$-r_{0}$ is the classical radius of electron $=2,8179.10^{-13} \mathrm{~cm}$
Typically for protein : $M(\mathrm{kDa})=1500 * I(0)\left(\mathrm{cm}^{-1}\right) / C(\mathrm{mg} / \mathrm{ml})$ with $\Delta \rho_{m} \approx 2 \cdot 10^{10} \mathrm{~cm} / \mathrm{g}$
$I(0)$ gives an independent estimation of the molar mass of the protein (only if the mass concentration, c, is precisely known ...)

I(0) must be expressed in absolute units cm^{-1} necessiting a calibration before (with water measurment where $\left.I(q)_{\mathrm{H} 2 \mathrm{O}}=0,01632 \mathrm{~cm}^{-1}\right)$

Determination of the mass from a reference

The scattering at zero angle, $I(0)$ is proportional to the molecular weight of the macromolecule, and the concentration and contrast of the macromolecule in solution. If a reference sample of known molecular weight and concentration is measured, it can be used to calibrate the molecular weight of any other scattering profile with known concentration :

Can be highly accurate for similar standards and samples under the same conditions.
The reference standard should have the same scattering contrast as the sample (i.e.. is in a similar buffer).

The standard and sample should be similar shapes (i.e. the same partial specific volume).

Asymptotic behaviour at larges angles: Porod law

Hypothesis: the particle has a well-defined interface with the surrounding buffer and a uniform electronic density

Does not depend on shape, only on contrast

The Porod Invariant is the integral of this curve

$$
\begin{aligned}
& \mathbf{Q}=\int_{0}^{\infty} I(q) \cdot q^{2} d q \\
& \mathrm{~V}_{\text {obj }}=\frac{2 \pi^{2} \cdot I(0)}{\mathbf{Q}}
\end{aligned}
$$

- Valid for diluted systems
- Does not require absolute units
- Not valid for unfolded objects
- Not precise

Asymptotic behaviour at larges angles: Porod law

SAXS provides a sensitive means to evaluate the degree of compactness of a polymer:

- To determine whether a polymer is globular, extended or unfolded
- To monitor the folding or unfolding transition of a polymer

This is most conveniently represented using the so-called Kratky plot:

Prof. Otto Kratky 1902-1995 Graz, Austria

Folded particle : bell-shaped curve (asymptotic behaviour in $I(q) \sim q^{-4}$)
Random polymer chain : plateau at large q-values (asymptotic behaviour in $I(q) \sim q^{-2}$)
Extended polymer chain : increase at large q-values (asymptotic behaviour in $I(q) \sim q^{-1 . x}$)

The bell shape vanishes as folded domains disappear and
 flexibility increases.

The curve increases at large q as the structure extends.

Back to real space : Distance Distribution Function

The distance distribution function represent the distribution of the distance between each atoms pair. The size of the particule is limited and satisfied the conditions where $P(r=D \max)=0$ and $P(r=0)=0$

The radius of gyration and the intensity at the origin can be derived from $P(r)$ using the following expressions:

$$
R_{g}^{2}=\frac{\int_{0}^{\max ^{\max }} r^{2} P(r) d r}{2 \int_{0}^{\max ^{2}} P(r) d r}
$$

$$
\mathrm{I}(0)=4 \pi r_{e}^{2} \varphi \int_{0}^{D} P(r) d r
$$

This alternative estimate of R_{g} makes use of the whole scattering curve, and is much less sensitive to interactions or to the presence of a small fraction of oligomers. Comparison of both estimates : useful cross-check

The scattered intensity $I(q)$ can be written with the distribution function $P(r) . P(r)$ function is calculated with indirect Fourier transform applied to the scattered intensity $I(q)$. The both curves contain the same information.

$$
\mathrm{I}(\mathrm{q})=4 \pi r_{e}^{2} \varphi \int_{0}^{D \max } P(r) \frac{\sin (q r)}{q r} d r
$$

$$
\mathrm{P}(\mathrm{r})=\frac{\mathrm{r}^{2}}{2 \pi^{2} \varphi r_{e}^{2}} \int_{0}^{\infty} q^{2} I(q) \frac{\sin (q r)}{q r} d q
$$

with Dmax as maximal distance in the particule
However, direct calculation of $P(r)$ from $I(q)$ is made difficult and risky by $\left[q_{\min }, q_{\max }\right]$ truncation and data noise effects.

The pair distribution function entirely depends on the shape of the particle

LABORATOIRE DE GENIE CHIMIQUE

How to use SAXS data to retrieve structural information

P. Roblin

a Université Fédérale Toulouse Midi-Pyrénées; INPT, UPS Laboratoire de Génie Chimique;
118 Route de Narbonne, F-31062 Toulouse France
${ }^{b}$ CNRS, UMR 5503, F-31062 Toulouse, France

SAXS for 3D structure reconstitution

The 1D SAXS profile is the Fourier transform of the 3D structure. Contrary to the direct scattering calculation, the inverse problem cannot be solved analytically, i.e., no "inverse Debye" formula can be constructed to yield 3D position coordinates from scattering data.

Reciprocal space
2D anisotropic image

Lose phase

orientation

Lose
orientation

Reciprocal space
2D isotropic image

1D profile reciprocal space

$$
I_{\mathrm{m}}(q)=\sum_{j=1}^{N_{A}} \sum_{j=1}^{N_{A}} f_{i}(q) f_{j}(q) \frac{\sin \left(q d_{i j}\right)}{q d_{i j}} . \begin{gathered}
\text { Debye } \\
\text { Formula }
\end{gathered}
$$

How to reconstruct the 3D structure from the 1D SAXS profile?

Ambiguity of the solution :
One 3D structure \rightarrow One SAXS curve \quad BUT \quad One SAXS curve \rightarrow Many 3D structures

3D shape reconstructions from SAXS data with DAMMIN

Ab initio shape modelling: nothing is known excepted the curve!
Principle of the method: any structure can be approximated at any resolution by a set of spheres of small enough diameter

Starting model $=$ sphere with a radius $R=\operatorname{Dmax} / 2$ with N scattered beads $\left(r_{0} \ll R\right)$
The number of the "dummy atom" $N \approx\left(R / r_{0}\right)^{3}$
Each sphere is associated to a position j and an index Xj corresponding to the type of the phase ($X_{j}=0$ for solvent and $X_{j}=1$ for molecule)

$$
f(X)=\chi^{2}\left[I(q)_{\exp }, I(q, X)\right]+\alpha P(X)
$$

$$
\chi^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left[\frac{I_{\text {exp }}\left(q_{i}\right)-s c a l e * I_{\text {calc }}\left(q_{i}\right)}{\sigma_{\exp }\left(q_{i}\right)}\right]
$$

After k iterations
X is a conformation of the system
$P(X)$ is a penalty function

D. I. Svergun, M. Kozin, M. Petoukhov, V. Volkov (1999). Biophys J. 2879-2886.

3D shape reconstructions from SAXS data with DAMMIN

Obtaining 3D shapes from SAXS data is a defined problem that could be solved by introducing additional information to reduce ambiguity of interpretation

Introduction of the penalty function to limit the formation of discontinuous models or disjoint spheres

$$
P(X)=1-\left\langle C\left(N_{e}\right)\right\rangle \quad C\left(N_{e}\right)=1-\exp \left(-0.5 N_{e}\right)
$$

N_{e} is the number of contact of a sphere with the neighboring spheres, N_{e} is equal to 12 in hexagonal lattice.

- In this case where the sphere has a maximum contact $C(12)=1$ so $P(X)=1-1=0$ (no penalty)
- With disconnected or loose sphere where $C(0)=0.002$ so $P(X)=0.998$ (strong penalty)
- With sphere on the surface $N_{e} \approx 6, C(6)=0,943$ so $P(X)=0.057$ (low penalty)

Compact model

Loose model
Disconnected model

3D shape reconstructions from SAXS data with DAMMIN

DAMMIN : necessit to perform a serie of run (10-50) to compare the different shape obtained with the same data.

After the run, an optimal superposition of models is realized with the program suite DAMSEL and DAMSUP.

The algorithm define a criteria of similarity, called « Normalized Spatial Discrepancy » or NSD, which measure the agreement between two models.
For similar shape NSD < 1, typically very similar shape NSD ≈ 0.5

Shp1

Shp2

Shp3

Damsel.log

Damfilt (average) (all superimposed)

Model are conserved if the NSD < Mean of NSD + 2*standart deviation
The model with the lowest NSD is the shape which has the most similarities with other, and can be regarded as the most representative of envelopes in accordance with the SAXS data

Be careful with damfilt.pbd because $I_{\text {damfilt }}(q) \neq I_{\text {exp }}(q)$

Ab initio model accounting for high resolution data

DAMMIN/DAMMIF : very low resolution because restricted portion of the data used ($q<0.2 \AA^{-1}$), and amguity of the models

GASBOR : a protein comprising N residues is represented by an ensemble of N spheres centered at the Ca positions.

An intial gas-like distribution of dummy residues is refined using Simulated Anneling to fit the data under constraints ensuring a final chain like distribution

GASBOR beads model

DAMMIF shape

High resolution structure
D. Svergun et al.(2001), Biophys. J., 80, 2946-2953.

Example of program to perform ab initio molecular modeling

DAMMIN/DAMMIF/GASBOR : ATSAS online (https://www.embl-hamburg.de/biosaxs/atsas-online/)

DENFER: Ligne SWING -SOLEIL (https://www.synchrotron-soleil.fr/fr/lignes-de-lumiere/swing)

Fitting from numerical model - example with SASVIEW

SASVIEW https://www.sasview.org/

Ab initio molecular modeling and model calculation on same data

Ab initio calculations

Beads model provided by Dammin

$90^{\circ} / z$

Sasview calculations

From an atomic structure to a solution scattering pattern

The scattering pattern of a particule with an atomic structure resolved by crystallography or NMR can be solved analytically

Debye method to compute scattering of electrons from nuclear position:

$$
I(q)=\sum_{i=1}^{M} \sum_{j=1}^{M} F_{i}(q) F_{j}(q) \frac{\sin \left(q \cdot r_{i, j}\right)}{q \cdot r_{i, j}} \quad \begin{aligned}
& \mathrm{F}_{i}(q), \mathrm{F}_{\mathrm{f}}(q), \text { Form factor of atom } \mathrm{i} \text { and atom } \mathrm{j} \\
& \\
& M \text { number of atom in the protein } \\
& \text { Distance } \mathrm{r} \text { between atom } \mathrm{i} \text { and atom } \mathrm{j}
\end{aligned}
$$

Approach computationally expensive and time-cost increases quadratically with the number of atom in the protein

The experimental scattering curves are obtained by substracting the contribution of the solvent. But the solvated molecules have a border of solvent bound with a diffusion density different from the disordered solvent

Molecule in solution

Molecule in vacuum

Hydrated molecule

Excluded volume

From an atomic structure to a solution scattering pattern

$A_{a}(q)=$ atomic scattering in vacuum
$A_{b}(q)=$ scattering from the hydratation shell, layer of thickness $3 \AA \AA$
$A_{s}(q)=$ scattering from excluded volume

In CRYSOL program, in order to gain computing time, $I(q)$ is developped in a series of Bessel functions and spherical harmonics:

$$
I_{\text {calc }}(q)=\sum_{l=0}^{L} \sum_{m=-1}^{l}\left|A_{l m}(q)-\rho_{0} C_{l m}(q)+\delta \rho B_{l m}(q)\right|^{2}
$$

The experimental scattering curves are then fitted using only 3 parameters in order to minimize the discrepancy χ :

- the general scale of $I_{\text {calc }}(q)$
- the total excluded volume V, which is equivalent to modifying the average contrast
- the contrast of the border layer $\delta \rho$

$$
\chi^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left[\frac{I_{\text {exp }}\left(q_{i}\right)-\text { scale }^{*} I_{\text {calc }}\left(q_{i}\right)}{\sigma_{\text {exp }}\left(q_{i}\right)}\right]
$$

Example of program to calculate scattering curve from 3D structure

CRYSOL: ATSAS package (https://www.embl-hamburg.de/ biosaxs/software.html)

Hoem > Nses ntam

Data analysis software ATSAS 3.2.1

A program suite for maliangle sestering dana analyia trom bielogieal maeromeleculen
Expenmenta dase procesuing

As inso moenting
As inse moentivg

Ripa boby moseving
Sissaty - mositry it milluterat compiem

matures ans fexbiet sputems

Hosel walustion and manipultion

Manus

Pepsi-SAXS: NanoD -team (https://team.inria.fr/nano-d/ software/pepsi-saxs/)

```
NANO-D
```



```
*-mom
Pepsi-SAXs
About
```



```
Method
```



```
    I.Wer use a very tast mosel for hystaton shet compulation besed on s unitorm gidid of policer
```



```
        *)
        meximum vaveneg wector
```



```
    ume of or mathod.
```



```
    two afustale prrameten
    5. Whe puid pertivier amen
```

FoXS: https:// modbase.compbio.ucsf.edu/foxs/

Rigid body modeling against SAXS data

SASREF : when atomic structures of domains are known, but no their mutual organization
The objective is to find the relative orientation of each subunit with a correct agreement with the SAXS data of the complex

The scattering intensity $I(q)$ of the complex is equal to the sum squared of the amplitudes of each subunit

$$
\left.I(S)=\left.\langle | \sum_{k=1}^{K} A^{(k)}(\vec{S})\right|^{2}\right\rangle_{\Omega}
$$

$$
A^{(k)}(\vec{S})=\exp \left(i . \vec{S} \cdot \vec{r}_{k}\right) \prod\left(\alpha_{k} \cdot \beta_{k} \cdot \gamma_{k}\right)\left[C^{(k)}(\vec{S})\right]
$$

The amplitude are calculated with CRYSOL from the high resolution structure of each monomer
The algorithm of minimization is the same used with DAMMIN with a penalty function (interconnectivity of the subunits, the steric clashes) and possibility to give information about contacting residues from other experiences.

$$
f(X)=\sum_{i} \chi_{i}^{2}+\alpha_{\text {dist }} P_{\text {dist }}(X)+\beta_{\text {cross }} P_{\text {cross }}(X)+\gamma_{\text {cont }} P_{\text {cont }}(X)
$$

Petoukhov \& Svergun (2005). Biophys. J., 89, 1237-1250.

Rigid body modeling with missing loop against SAXS data

As SASREF, the amplitude are calculated with CRYSOL from the high resolution structure of each monomer

The algorithm of minimization is the same used with SASREF with a penalty function including the steric clashes Pcross, the dihedral angle Pang and Pdih, and the compactness of the loop Pext. The possibility to give information about contacting residues from other experiences is also added.

```
Flexibility }->\mathrm{ no unique structure!
NOT a structure but a SAXS data compatible model
```

Petoukhov \& Svergun (2005). Biophys. J., 89, 1237-1250.

Example of Rigid body modeling with non protein substrate

International ANR MOSAIC3D, R\&D Center for Membrane Technology of Taïwan/LGC , Pierre Aimar, Patrice Bacchin, Christel Causserand, Pierre Roblin \& PhD Charaf Merzougui

Experimental curve comparison of the HSA obtained on the SAXS laboratory and curve calculated from the structure of any PDB atom of the HSA

Exclusion chromatography profile performed with HSA in PBS buffer and HSA with PAA in PBS buffer $+5 g$ / L PAA

SAXS curve comparison obtained on the HSA and PAA mixture with the sum of SAXS curves of HSA and PAA

Molecular modeling in all atom of PAA-5HSA complex against SAXS data

Merzoughy \& all : Pearl-necklace assembly of human serum albumin with the poly (acrylic acid) polyelectrolyte investigated using small angle X-ray scattering (SAXS) Soft matter 2020

Rigid body modeling with missing loop against SAXS data

DADIMODO : Refining Atomic Models of Multi-Domain Protein Complexes from SAXS data (https:// dadimodo.synchrotron-soleil.fr/submission)

Body1 : A 31-250 Body2 : A 275-605, B 275-605 Body3 : B 31-250

Structural model created by dynamic molecular

Structural model calculated by Dadimodo

LABORATOIRE DE GENIE CHIMIQUE

Principle of Small Angles X-rays Scattering or SAXS

P. Roblin

a Université Fédérale Toulouse Midi-Pyrénées; INPT, UPS Laboratoire de Génie Chimique; 118 Route de Narbonne, F-31062 Toulouse France ${ }^{b}$ CNRS, UMR 5503, F-31062 Toulouse, France

http://Igc.cnrs.fr

SAXS characterization of macromolecule with coupled HPLC

Typical experience performed with HPLC

Scattering curves measured during the elution

From Guinier equation, Rg and $\mathrm{I}(0)$ calculation for each curve.

Selection of identical curves before \qquad data averaging

Comparison between curve obtained with direct injection and after HPLC method

Column separation ensure monodispersity of the measured solution

Perfect substraction of the solvent contribution

Homemade samples environnement developement

Major problems with protein:

- Low contrast with the solvent and dilute system and strong propension to denaturation and agregation

Solution consist to add a supplemntary step of purification with a size exclusion chromatography online

Elution profile of a protein

$\operatorname{tog} 1(9)$

qen A^{4}

How to deal with the complex with low affinity

HPLC with no compound in the buffer

Aed fillration eplumn equilibrated with buffer alowe

Seartering curve with three contributions (complex, compoud A and B)

HPLC with compound in the buffer

Ged fitronion colume equilibrated minh campound's in the buffer

> In the capillary

Seartrering curve of the complexed form alone

